Transition Layers for a Bistable Reaction-Diffusion Equation with Variable Diffusion
نویسندگان
چکیده
منابع مشابه
Pulses and waves for a bistable nonlocal reaction-diffusion equation
A bistable nonlocal reaction-diffusion equation is studied. Solutions in the form of simple and periodic travelling waves, single and multiple pulses are observed in numerical simulations. Successive transitions from simple waves to periodic waves and to stable pulses are described.
متن کاملBlow-up for a reaction-diffusion equation with variable coefficient
We study the blow-up behavior for positive solutions of a reaction–diffusion equationwith nonnegative variable coefficient. When there is no stationary solution, we show that the solution blows up in finite time. Under certain conditions, we then show that any point with zero source cannot be a blow-up point. © 2012 Elsevier Ltd. All rights reserved.
متن کاملLayers and Spikes in Non-homogeneous Bistable Reaction-diffusion Equations
We study ε2ü = f(u, x) = Au (1−u) (φ−u), where A = A(u, x) > 0, φ = φ(x) ∈ (0, 1), and ε > 0 is sufficiently small, on an interval [0, L] with boundary conditions u̇ = 0 at x = 0, L. All solutions with an ε independent number of oscillations are analyzed. Existence of complicated patterns of layers and spikes is proved, and their Morse index is determined. It is observed that the results extend ...
متن کاملTransition fronts for periodic bistable reaction-diffusion equations
This paper is concerned with the existence and qualitative properties of transition fronts for spatially periodic reaction-diffusion equations with bistable nonlinearities. The notion of transition fronts connecting two stable steady states generalizes the standard notion of pulsating fronts. In this paper, we prove that the time-global solutions in the class of transition fronts share some com...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Funkcialaj Ekvacioj
سال: 2010
ISSN: 0532-8721
DOI: 10.1619/fesi.53.21